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Abstract 

According to the Fluid Flow Equation, the mass flow rate of a fluid is the product of its 

density, area and velocity. Fast flowing storm water could therefore cause a sudden increase 

in fluid velocity and flooding, an increasingly common challenge as the effects of global 

warming become more pronounced. These might overshoot certain desirable thresholds and 

damage the channel or canal, by scouring. Similarly, the Continuity Equation guarantees that 

the velocity of a fluid decreases the closer a location is from the bottom. This implies a 

converse danger of siltation when the speed of flow is too sluggish. For that reason, channel 

designers carefully choose shapes with dimensions which maximize discharge, while keeping 

siltation in check. They also seek to slow down the velocity of the channel’s flow by making 

it dissipate much of its load in case of an overflow. This can be partially achieved by an 

appropriate design of the area above the channel. Meta-heuristic, nondominated sorting 

genetic algorithms, ant-colony optimisation, differential evolution algorithm (DEA), 

sequential quadratic programming (SQP) and Lagrange multipliers are some of the methods 

deployed in minimising the cost function subject to the cross-section of a channel. In practice, 

channel design hydrodynamics and engineering will involve more parameters than those that 

this paper covers, including the type of construction materials used to line the channel. Several 

studies have shown that for a given discharge value and for all slopes, the total cost of 

construction of a compound triangular cross-section with a rounded bottom is always less than 

the cost of trapezoidal cross-sections. This paper assumes other factors optimum and applies 

a purely mathematical approach to determine the best round bottomed triangular open channel 

design which additionally decreases velocity fluctuations during storms. 
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Introduction 

The main difference between fluid flowing in a closed pipe (full-bore) and the other type of 

flow categorised as open-channel is that the latter has a free and exposed surface that is subject 

to atmospheric pressure, while in the former, the flow is determined entirely by solid 

boundaries. Wahome (2014) gives a more detailed comparison of the two flows. Familiar 

open-channels flows include rivers and streams which are natural, while canals, flumes, 

spillways are examples of artificial channels.  

The hydraulic efficiency of a channel depends on its shape. Therefore, the channel 

shape which provides maximum discharge for a fixed bed slope, roughnes and fixed area is 

the most efficient. According to Massey and Smith (2006), the formulae of Manning and 

Chezy among others predict that for a uniform flow with a given bed gradient, the hydraulic 

mean depth m affects the factors which influence channel efficiency such as discharge (Q), 

mean velocity, roughness and cross-sectional area. The hydraulic mean depth, m, is defined 

as the ratio of the flow area A to the wetted perimeter, P. The less the wetted perimeter, the 

greater the m and the discharge, and the less the cost of lining materials. 

It has been established in open-channel flow studies that the semi-circular bottom gives 

the maximum hydraulic mean depth according to Douglas et al. (2001), but in practice this 

shape is useful only for small channels since some other factors such as the need for a 

reasonable angle of repose for granular banking material, relative ease of construction and 

cost excavation often override. Trapezoidal channels, which include the triangular and 

rectangular shapes, are more widely used. These are the ones encountered in practice, 

especially where the digging is done manually by shovels. For any shape adopted for a 

channel, different bases and angles will give different efficiencies, so that there is a particular 

configuration which gives the most discharge per a certain amount of excavation. 

This paper assumes the fluid flow which is irrotational, inviscid, steady and 

incompressible neglets surface tension and viscosity, and considers only mathematical 

hydraulic efficiency to highlight the most economical dimensional characteristics that 

minimise velocity flunctuations, scouring and siltation for the round-bottomed triangular open 

channel. An appropriate extension of the section above the free surface to ameliorate the 

effects of overflow due to storms is also proposed. 
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Mathematical Principles 

Application of Manning’s Equation in Treatment of Common Channel Shapes 

In the context of open channel flow, Marriott and Uddin (2009) treat the terms best hydraulic 

section and most economic section as synonymous. The more a channel gives the maximum 

discharge for a given amount of excavation, the more economical it is said to be (Rajput, 

2006). At the heart of most open channel flow computations lies the Manning’s equation, 

𝑸 =
√(𝑺𝟎)  𝒎

𝟐
𝟑 𝑨

𝒏
          (2.1) 

 

in which 𝐐 represents the flow rate in the channel, 𝐒𝟎 the slope of the channel, A the cross-

sectional area of the channel and m is the hydraulic radius of the channel, defined as the ratio 

of cross-sectional area to the wetted perimeter, P. The equation (2.1) above may also be 

reformulated as,  

𝑨 = (𝑷)
𝟐

𝟓 (
𝒏 𝑸

√𝑺𝟎
)

𝟑

𝟓
         (2.2) 

 

The equation (2.2) demonstrates that if 𝑺𝟎, 𝐐 and n held constantly, A and P are directly 

proportional, and that gives a way of minimising the flow area (and thus maximising the 

efficiency of the channel). 

In a way, the round-cornered triangular channel is a special case of a simple trapezoidal 

channel which is the reason this paper uses the latter to demonstrate the application of 

Manning’s equation in determining the optimum dimensions of a channel. 

 

Fig. 1: The Trapezoidal Open Channel 
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The wetted area and wetted perimeter of the trapezoidal channel illustrated in the Figure 1 

are, 

 

𝑨 = ∫ ∫ 𝒅𝒙𝒅𝒚 = 𝝉 𝒉 + 𝒉𝟐 𝒄𝒐𝒕𝜽
𝒚𝒄𝒐𝒕(𝜽)+𝝉

𝒚𝒄𝒐𝒕(𝝅−𝜽)

𝒉

𝟎
      (2.3) 

𝑷 = 𝝉 + 𝟐 𝒉 𝒄𝒐𝒔𝒆𝒄𝜽               (2.4)   

𝒎 =
𝑨

𝑷
=

𝑨

𝝉+𝟐 𝒉 𝒄𝒐𝒔𝒆𝒄𝜽
=

𝑨
𝑨

𝒉  
− 𝒉 𝒄𝒐𝒕𝜽+𝟐𝒉 𝒄𝒐𝒔𝒆𝒄 𝜽

,    (𝒔𝒊𝒏𝒄𝒆 𝝉 =
𝑨

𝒉  
−  𝒉 𝒄𝒐𝒕𝜽)          (2.5) 

 

This means that 𝑚 =
𝐴

𝐴

ℎ   
 −  ℎ 𝑐𝑜𝑡𝜃+2ℎ 𝑐𝑜𝑠𝑒𝑐 𝜃

, which is greatest when the denominator is minimised 

with respect to ℎ. Furthermore, 

 
𝜕

𝜕ℎ
(

𝐴

ℎ   
  −   ℎ 𝑐𝑜𝑡𝜃 + 2ℎ 𝑐𝑜𝑠𝑒𝑐 𝜃) = −ℎ(−𝑐𝑜𝑠𝑒𝑐2𝜃) + 2ℎ(−𝑐𝑜𝑠𝑒𝑐𝜃𝑐𝑜𝑡𝜃) = 0   (2.6) 

 

Thus, 

  
1

𝑠𝑖𝑛𝜃
(1 − 2𝑐𝑜𝑠𝜃) = 0  ⟹ 𝜃 =

𝜋

3
      

 (2.7) 

 

This means that the trapezoidal channel is most efficient when 𝜃 =
𝜋

3
 ,  𝑖. 𝑒.  600, which is the 

half of a hexagon. 

 

Additionally, with 𝜃 =
𝜋

3
, we also infer a relationship between the sides; i.e., 

 𝜏 =
2

√3
 ℎ            

 (2.8) 
 

The other relationships such as wetted perimeter, P, and cross-sectional area, A, for the 

trapezoidal channel are similarly derived; that is, 

 

𝑃 = ℎ 2√3, 𝐴 = ℎ2 √3, 𝑃 = 3𝜏, surface width 𝑤 =
4

√3
 ℎ and bottom-width to depth ratio,  

   
𝜏

ℎ
= 2(𝑐𝑜𝑠𝑒𝑐2𝜃 −  𝑐𝑜𝑡𝜃)       

    (2.9) 
    

Table 1and Figure 2 compare the efficiencies of channels having number of sides near the six 

of the hexagonal one. It was generated using Microsoft Excel. 
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Table 1: Efficiency Values for Polygons Around the Hexagon with A = 100 and η = 50 

 

 

Fig. 2: The relative efficiencies of channels near the hexagonal one, with A = 100 and h = 50 

The graph peaks at n = 6 therefore supporting the result that the hexagon is the most efficient 

trapezoidal design. It also reveals that a 7-sided (heptagonal) cross-section at 0.011107269 is 

more efficient than a 5-sided (pentagonal) one at 0.011001071. 

 

The Hybrid Triangular Channel With Rounded Bottom 

Although the semi-circular channel is the most efficient, it has limited practical usability. This 

creates need for hybrid channels which are trapezoidal but with rounded bottoms. Froehlich 

(2008), Chahar and Basu (2009), Hameed (2010) and several others have applied different 

techniques to specify the optimum dimensions of various types of hybrid round-bottom 

channels. This paper has focused on the round-bottomed channel shown in Figure 3, which 

will be treated as a special case of the trapezoidal one with round corners. 
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Fig. 3: A round-cornered triangular channel as a special case of Figure 3, with b = 0  

 

In Figure 3, 𝑟 is a scalar multiple of h, so that  𝑟 = 𝜁ℎ,      0 ≤ 𝜁 ≤ 1     

(2.11) 

 

The expressions for the wetted perimeter, P, and the channel cross-sectional area, A, may 

respectively be expressed as  

 

𝑃 = 𝑏 + 2𝜁ℎ (
𝜋𝜃

180
) + 2ℎ 𝑐𝑜𝑠𝑒𝑐2𝜃  − 2𝜁ℎ(𝑐𝑜𝑠𝑒𝑐2𝜃 − 𝑐𝑜𝑡𝜃) (2.12) 

 

And 

 

𝐴 = 𝑏ℎ + 2𝜁ℎ2(𝑐𝑜𝑠𝑒𝑐2𝜃 − 𝑐𝑜𝑡𝜃) + ℎ2𝑐𝑜𝑡𝜃 −2𝜁2ℎ2 (𝑐𝑜𝑠𝑒𝑐2𝜃 − 𝑐𝑜𝑡𝜃) + 𝜁2ℎ2  (
𝜋𝜃

180
) 

 (2.13) (Fattouh & Yousif (2020). Setting 𝑙𝑖𝑚 
𝑏→0

𝐴 and lim
𝑏→0

𝑃 makes the equations (2.12)  

 

and (2.13) reflect the situation represented by Figure 4. Subsequent optimisation based on 

Manning’s formula and the criterion of minimal wet-perimeter yields the most efficient radius 

r as  

 

  𝑟 =
2

1
4 𝑄𝑛

(𝑐𝑜𝑡 𝜃+
𝜃𝜋

180
)

3
8  

  √𝑆𝑓

         (2.14) 

 

Where Q is the discharge for a given Manning’s roughness coefficient, n, and 𝑆𝑓 is the 

longitudinal slope. Furthermore, the other optimal conditions for radius r, top width 𝑊, cross-

sectional area 𝐴, wetted perimeter,  𝑃, as summarised by Experto en Ingenieria (2022), in an 

informative online video narration,  
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 r=h, 𝑊 = 2𝑟𝑐𝑜𝑠𝑒𝑐2𝜃, 𝐴 =
𝑊

4𝑐𝑜𝑡𝜃
−

𝑟2

𝑐𝑜𝑡𝜃
(1 − (

𝜃𝜋

180
) 𝑐𝑜𝑡𝜃),    (2.15)  

and 𝑃 =
𝑊

𝑐𝑜𝑡𝜃
𝑐𝑜𝑠𝑒𝑐2𝜃 −

2𝑟

𝑐𝑜𝑡𝜃
(1 − (

𝜃𝜋

180
) 𝑐𝑜𝑡𝜃)             (2.16) 

 

Minimising the fluctuation of velocity above the free surface of the optimised channel 

 

Fig. 4: An element cross-sectional area above the open surface of the channel  

Figure 4 shows the top surface of a compound round-bottomed channel with constant 

hydraulic radius 𝑚 =
𝐴

𝑃
, which is the only requirement according to Manning and Chezy 

formulae to keep velocity constant. The shaded section is a trapezoidal area element with 

horizontal sides equal to 2𝑥 and 2𝑥 + 2𝛿𝑥 ,and a thickness 𝛿𝑦. 

 

  

The element area is 𝐴 =
((2𝑥+2𝛿𝑥)+2𝑥)

2
(𝛿𝑦)= 2𝑥𝛿𝑦 +  𝛿𝑥 𝛿𝑦, while the wetted perimeter,  

𝑃 = 2√𝛿𝑥2 + 𝛿𝑦2 Therefore, the hydraulic radius 𝑚 = 𝑙𝑖𝑚
𝑛→𝛿𝑥=0,𝛿𝑦=0

2𝑥 𝛿𝑦+ 𝛿𝑥 𝛿𝑦

2√𝛿𝑥2+𝛿𝑦2
 , that is 

𝑚 =
𝑥 𝑑𝑦

√𝑑𝑥2+𝑑𝑦2
   𝑚2 =

𝑥2 𝑑𝑦2

𝑑𝑥2+𝑑𝑦2 and 𝑚2(1 + (
𝑑𝑦

𝑑𝑥
)

2

) = 𝑥2 (
𝑑𝑦

𝑑𝑥
)

2

    ∫ 𝑑𝑦 = ∫
𝑚

√𝑥−𝑚2
𝑑𝑥, 

which yields  𝑦 = 𝑚 𝑙𝑛 (𝑥 + (√𝑥2 − 𝑅2)) + 𝑘         (3.1) 

 

In view of Figure 4, where the equation of the slant side of the channel is 𝑦 = 𝑥 𝑡𝑎𝑛 𝜃 i.e. 

(choosing the origin, O appropriately), the value of the arbitrary constant k may be determined 

whenever x is known (Rajput, 2006). The channel equation (3.1) is applicable in designing 
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the top sections of any regularly shaped channels for minimal velocity fluctuations during 

overflow. 

 

Conclusion 

This paper has used a purely analytical approach to explore the efficiency of the hybrid round-

bottom triangular open channel with minimum velocity fluctuation above the free surface. 

The motivation for exploring hybrid shapes is the fact that the semi-circular channel, known 

to rank highest in efficiency unfortunately falls short in utility due to propensity for scouring, 

and difficulty in layering. The optimum dimensions of the round-bottom triangular channel 

with minimum velocity fluctuation in stormy conditions were explored and established to be  

𝑦 = 𝑚 𝑙𝑛 (𝑥 + (√𝑥2 − 𝑅2)) + 𝑘    with the significance of each symbol as elaborated in 

section 3 above. 
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